Quantifying performance and effects of load carriage during a challenging balancing task using an array of wireless inertial sensors.

نویسندگان

  • Stephen M Cain
  • Ryan S McGinnis
  • Steven P Davidson
  • Rachel V Vitali
  • Noel C Perkins
  • Scott G McLean
چکیده

We utilize an array of wireless inertial measurement units (IMUs) to measure the movements of subjects (n=30) traversing an outdoor balance beam (zigzag and sloping) as quickly as possible both with and without load (20.5kg). Our objectives are: (1) to use IMU array data to calculate metrics that quantify performance (speed and stability) and (2) to investigate the effects of load on performance. We hypothesize that added load significantly decreases subject speed yet results in increased stability of subject movements. We propose and evaluate five performance metrics: (1) time to cross beam (less time=more speed), (2) percentage of total time spent in double support (more double support time=more stable), (3) stride duration (longer stride duration=more stable), (4) ratio of sacrum M-L to A-P acceleration (lower ratio=less lateral balance corrections=more stable), and (5) M-L torso range of motion (smaller range of motion=less balance corrections=more stable). We find that the total time to cross the beam increases with load (t=4.85, p<0.001). Stability metrics also change significantly with load, all indicating increased stability. In particular, double support time increases (t=6.04, p<0.001), stride duration increases (t=3.436, p=0.002), the ratio of sacrum acceleration RMS decreases (t=-5.56, p<0.001), and the M-L torso lean range of motion decreases (t=-2.82, p=0.009). Overall, the IMU array successfully measures subject movement and gait parameters that reveal the trade-off between speed and stability in this highly dynamic balance task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks

Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...

متن کامل

EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks

Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...

متن کامل

A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)

This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...

متن کامل

A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation

In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...

متن کامل

Standing Handball Throwing Velocity Estimation with a Single Wrist-Mounted Inertial Sensor

Background. It is well known that overarm throwing is one of the most performed activities in the handball. Shoulder and glenohumeral injuries incidence are high in handball because of both pass, and shooting activity was executed repeatedly in high angular speed. Objectives. This study set out to investigate the usefulness of inexpensive commercial inertial movement sensors for prediction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gait & posture

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2016